Difference between revisions of "MotherBoard Testing"

From FreekiWiki
Jump to navigation Jump to search
(clarified instruction)
Line 1: Line 1:
 +
{{migrate}}
 
{|fontsize="12" cellpadding=".5" border=".05" font-weight="bold" cellpadding=".7"
 
{|fontsize="12" cellpadding=".5" border=".05" font-weight="bold" cellpadding=".7"
 
|-
 
|-

Revision as of 12:33, 28 March 2014

deletion

This page is being migrated to a documnent of Free Geek's Google Drive.
Once the migration is done, we will post a link to the new page.


STEPS NOTES AND DETAILED INSTRUCTIONS
Evaluate if the motherboard should be recycled

CHECK THE WHITEBOARD FOR EXCEPTIONS = We sometimes get requests for MoBos that are ordinarily out-of-spec.

Reasons to Recycle a motherboard include
  • The board has visible damage. This includes:
    • Blown capacitors. Visually inspect for check for ANY domed capacitors.
      Blown capacitors Check for curved or leaking top.
    • Damaged sockets. If it is an LGA socketed motherboard, check carefully for bent socket pins with a magnifying lens.
    • Dark areas on the underside of the board where a device (surface mounted) may have over heated.
  • It has one of the following socket types: Socket370, Socket462, Socket754, Socket478, slot processor (Pentium II), a dual SOCKET server board (XEON)
  • It says that it is a DELL motherboard AND is not a standard ATX format. If you do not know what a standard ATX motherboard looks like, ask an instructor to help you.
  • There are no SATA ports.
  • It is a BTX format motherboard (I/O shield is on the right hand side of the board), a multisocket server board, or have a non-standard ATX (see ATX definition below).
  • More info under "Reasons NOT to reject a motherboard on preliminary inspection" under the "Notes" section at the bottom.
Mount the board
  • Place the motherboard on the test jig, placing each peg on the jig into the matching hole on the motherboard - do NOT rest the motherboard *ON* the pegs, it could cause a short.
  • Orient the motherboard so the external ports (printer, PS2, USB, etc.) are facing you.
If there is no processor, install an appropriate CPU.
  • Look up the motherboard specification sheet for the appropriate CPU to use.
    • Unless it is a very fancy motherboard, start with the fastest CPU we have in stock for this socket type, or one which is recommended in the specification sheet.
    • Write down the maximum amount of RAM this motherboard will support, and also the type of RAM (DDR1, DDR2, DDR3 and what speed).
Installing a processor in the CPU socket BE CAREFUL!
  • Processor pins are gold alloy and bend easily. Use the standard practice for inserting CPU's in the motherboard socket as recommended in the User Manual.
  • If you bend a pin or pins, you can use a 0.5 mm mechanical pencil and magnifying lens to right the bent pins.
  • If you snap off any of the processor pins, recycle the processor and get a replacement. Each pin is required for proper functioning of the CPU.
Connect mouse and keyboard
  • Use USB or PS2 mice or keyboards.
Connect IDE devices
  • If there is an IDE connector on the motherboard, connect the IDE hard drive.
  • Before connecting the cables, visually verify the pins of the connector(s) are straight.
Connect the power supply Make sure the power switch on the power supply is in the off position before plugging the connector into the board.There are, potentially, 2 types of power connectors to be connected.
  • 24 pin Molex connectors (main power) - These connectors are actually a 20 pin connector with a 4 pin add-on
  • 4 pin Molex connector (+12V power)
  • Install the main power connector first, then the 4 pin connector. It is very easy to forget the 4 pin connector and if you do the motherboard will not boot.
Install a tested button battery Button/CMOS batteries are necessary for retaining BIOS settings when power is absent. Battery must indicate at least 2.5 VDC when tested.
Clear the CMOS chip On the motherboard, usually in the upper right quadrant and near the button battery, there will be 3 posts with a jumper on 2 of them marked CLRRTC or CMOS. On some of the newer motherboards there will be a momentary pushbutton on the motherboard marked CMOS. These perform the same function. Clearing the CMOS chip returns all settings to the factory default.
  • If there are the 3 posts present, move the jumper from pins 1 & 2 to pins 2 & 3. Wait 10 seconds. Then return the jumper to pins 1 & 2.
  • If there is a momentary pushbutton, push and hold the button for 10 seconds, then release.
  • Clearing CMOS settings can also be accomplished in the BIOS (see "Configure BIOS Settings" below).
Power up the motherboard and go into BIOS The following is the power-up procedure:
  • Add a memory stick to the first memory slot as indicated on the motherboard.
  • Turn on the power supply
  • Find the front panel header post group. Take a screwdriver and momentarily short the 2 pins labeled PWR or use a momentary push button.
  • If there is no label indicating the power posts, they are usually the two on the sides of the header group immediately following the key post (missing post).
  • If you found the correct power posts, put a momentary pushbutton switch on those 2 posts. This makes reboots much easier.
If you hear beep codes or the heatsink fan powers up but there is no video, see notes below under Power Up Trouble Shooting.
If you have trouble getting into BIOS see notes below under Power Up Trouble Shooting.
If you still have trouble try following the instructions in the User Manual for the motherboard.
Configure BIOS Settings
  • Select the choice which loads the system DEFAULTS
  • Enter the current date and time.

Enable or Disable the following settings (this list is not exclusive):

  • DISABLE floppy support
  • ENABLE hyperthreading
  • ENABLE PNP O/S
  • ENABLE ESCD/CMOS reset
  • DISABLE FullScreen Logo
  • ENABLE quick boot
  • ENABLE support for all USB devices*Plug in PS2 mouse or USB mouse if no PS2 port.
  • ENABLE support for all IDE devices (slot closest to the CPU)
  • ENABLE IDE bus mastering on all channels
  • ENABLE SATA devices as IDE
  • ENABLE SMART monitoring of disks
  • ENABLE LAN
  • ENABLE sound
  • ENABLE ACPI support if available
  • ENABLE the on-board video controller as the first video device, otherwise use the PCIe controllers.
  • ENABLE smart cpu cooling fan control
  • ENABLE Boot from other device
  • After power off - STAY OFF
  • DISABLE support for the floppy controller, MIDI, SERIAL ports, PRINTER port, LAN boot chip, boot-up floppy seek, full screen logo, RAID
  • Boot Device Priority: CD, hard drive, all others disabled.
  • SAVE your choices, exit, and reboot.
Prep Motherboard
  • Plug in the ethernet and sound cables
Boot into OS
  • Turn on the power supply and boot into UBUNTU's graphical desktop.
  • If the booting process (GRUB) insists on checking the hard drive file system for errors, let it. It only does so when it has detected a file system anomaly of some sort which it determines to be "of concern".
  • If the operating system does NOT boot to the graphical interface ask your instructor for assistance.
Test the following. Recycle board if any tests fail.

If any of the following apply go to "How to Recycle", listed as the last step.

  1. Ethernet Ports - Start up Firefox and go to an off-site web page to verify the ethernet port works. If there is no ethernet access and you KNOW the cable is live, an Ethernet PCI card can be used for internet access. You will make note of this on the motherboard label.
  2. Audio - Goto a YOUTUBE page with music to determine if sound is working.
Fill out Keeper Label
  • Select "SYSTEM/ADMINISTRATION/SYSTEM MONITOR" and see what type/speed cpu you are working with and make note of this data on the label which you are going to stick on the back of the motherboard. Stop the monitor process (kill the window).
  • Create a terminal window and type: sudo lshw then enter the root password. Scroll to the top of the window and record the following information: processor type, processor speed, socket type, cache1 size. You can multiply the external clock speed by 4 to get the FSB speed. Otherwise, after testing has completed, pull the heatsink off the processor and visually record the processor speed, cache size, and FSB speed from the CPU ship if it is an INTEL chip. If it is an AMD CPU, get this information from the 3-ring binder kept at the memory testing station.
Shut the system down Use the system halt icon to shut down.
  • POWER OFF the power supply.
Boot from the SATA drive Now we verify that SATA works correctly:
  • Remove the IDE hard drive cable from the motherboard.
  • Attach the SATA drive cable to SATA0 (SATA1 if there is no 0).
  • Turn on the power supply and power up the motherboard.
  • If you get to the UBUNTU logo you need go no further. Power down the system.
  • Note any discrepancies on the motherboard label.
  • Power off.
  • Remove all cables, cards, memory, and power connections.
Remove The Processor
  • Remove the processor and re-install the heat sink
  • Clean off and label the processor
  • Affix a "No Processor" sticker prominently on the heat sink
Finalize the testing process
  • Fill out the motherboard label completely.
  • Attach label to the back (solder/non-component) side of the motherboard.
  • Ideally, bring the processor and the board to the store at the same time, and hand them off to a store employee for pricing.
  • Kick back, return to Hardware Testing, and brag to everyone that you successfully tested a motherboard at Free Geek. Be prepared to be pummeled with apple cores, mouse pads, and used chewing gum.
How to RECYCLE a motherboard
  • Remove the CPU heatsink and, if it is of use on other types of motherboards or looks to be sell-able, save it. Otherwise, recycle the heatsink in a yellow bin.
  • Remove the processor and save it for testing later if it qualifies (it is at least the minimum speed and acceptable socket type).
  • Remove the button battery and save it for testing and reuse later.
  • Remove any easily accessible jumpers and save them. Especially the ones with extended gripping surfaces.

Notes:

Reasons NOT to reject a motherboard on preliminary inspection
  • Broken or missing memory slot attachment arms are no reason to reject a board as long as the board passes all the other tests.
  • Missing PS2 ports as long as there are USB ports available.
  • Missing on-board sound (resolved with PCI based sound cards).
  • Missing LAN ports (resolved with PCI based LAN cards).
  • Missing on-board video (resolved by PCI-e slots on the motherboard).
  • Missing PCI slots - as long as there are PS2 or USB, video, and sound ports on the board.
  • Broken or damaged Northbridge, Southbridge, or SUPERIO chip heatsinks can be replaced as can any on-board fans.
Power Up Troubleshooting

Beep codes during power on step: Power down the motherboard. The beeping normally means either:

  • You have the wrong speed memory installed. Power down the motherboard, choose the next slowest speed memory card, and reboot. This usually fixes the beeping problem.
  • You have the wrong processor speed, FSB speed, L2 cache size cpu installed. Refer to the User Manual for the motherboard for the correct speed processor. If no User Manual is available try a processor with a slower FSB speed or smaller L2 cache.
  • Make 2 or 3 attempts at fixing the beeping problem before deciding to recycle the motherboard. Ask your Instructor first.
The heatsink fan powers up, but I get no video.
  • You'll know if you have video because most monitors have an LED lit power button that changes color (usually green) when the motherboard senses a video sync signal. This could be due to many issues:
  • The onboard video isn't working. Either use an external video card in the video card slot or use a PCI based video card and reboot.
  • The motherboard doesn't like the video card you are using. Change out the video card - twice. It COULD be something other than a video card causing the problem.
  • Wrong speed memory. Use only memory that has been pretested by Advanced Testing.
  • Wrong/bad processor. Use only processors that have been pretested by Advanced Testing.
  • Check for blown caps - again.
Help getting into BIOS
  • Check to see if the CLRCMOS jumper is in the correct position. Normally, this means pins 1&2 are jumpered, but this is manufacturer dependant. A jumper in the wrong position will sometimes prohibit the motherboard from booting.
  • Look at the motherboard...is there an open 4 pin Molex connector? You forgot to plug in the +12v.connector, dummy ! Turn off the power supply, plug it in, and try again.
The button on the monitor turns green and I get writing on the screen.
  • Congratulations ! You have a successful boot. The next trick is to intercept the booting process so you can configure the BIOS.
  • Once the initial black and white screen appears on the monitor look for and indication of what key sequence to enter to get into the BIOS configuration area.
  • This key sequence USUALLY involves hitting the DEL, F1, F10, or F12 key.
  • If NO indication appears on the screen about which key to enter, start entering the above keys as soon as you get a green light indication from the monitor.

Motherboard layout.jpg

  • Motherboards GENERALLY have a standardized layout as follows:
I. Lower left quadrant contains the CPU socket, CPU heatsink, the 12 volt power connector (4 pin Molex), and all the external connectors.
II. Upper left quadrant contains the memory slots, main power connector, floppy connector, and may have one to two IDE connectors.
III. Upper right quadrant contains SATA connectors, SOUTHBRIDGE chip, RAID connector (if any), front panel header, USB header(s).
IV. Lower right quadrant contains AGP/PCIe video slots, PCI slots, button battery (this can actually be in this quadrant or the upper right), PCI extender slot, and audio header.